
OpenADR 3.0 Definitions - 1 -

OpenADR 3.0
OpenADR 3.0 Definitions

Updated 09/06/2023
Revision Number: 3.0.0

Document Status: Final Specification
Document Number: 20230706-1

Contact: Editors: Technical Director
OpenADR Alliance:

OpenADR Alliance
111 Deerwood Road, Suite 200
San Ramon, CA 94583
USA
info@openadr.org

Frank Sandoval - Pajarito
Technologies LLC
Bruce Nordman – LBNL
Other OpenADR Alliance Members

Rolf Bienert
<rolf@openadr.org>

Please send general questions and comments about the specification to comments@openadr.org.

Copyright © OpenADR Alliance (2023). All Rights Reserved

mailto:info@openadr.org
mailto:comments@openadr.org

OpenADR 3.0 Definitions - 2 -

CONTENTS

1. Introduction 3
2. Normative References 3
3. Informative References 3
4. Terms and Definitions 4
5. Overview 4

5.1. System Architecture 4
5.2. Local Scenarios 6
5.3. VEN enrollment 6

6. Information Model 7
7. EndPoints 10
8. Revision 13
9. Extensibility 13

9.1. Model Extension 13
9.2. Private Strings 14

10. Enumerations 14
10.1. Introduction 14
10.2. Event Payload Enumerations 15
10.3. Report Enumerations 18
10.4. Reading Type Enumerations 20
10.5. Operating State Enumerations 20
10.6. ResourceName Enumerations 21
10.7. Data Quality Enumerations 21
10.8. Target Enumerations 22
10.9. Attribute Enumerations 23
10.10. Unite Enumerations 23
10.11. Currency Enumerations 24

11. Security 24
11.1. Security objectives 25
11.2. Assumptions 25
11.3. Client Scenarios 26
11.4. HTTPS/TLS 26
11.5. API Gateway 27
11.6. OAuth 2.0 client credential flow 27
11.7. OpenAPI Specification 28

12. Reference Implementation 29
12.1. Step 1: Trade clientID/clientSecret for access token 29
12.2. Step 2: Include access token in API requests 29
12.3. Step 3: Resolve token to scopes 29

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 3 -

12.4. Step 4: Enforce Access Control 30

1. Introduction

This document describes the third major iteration of the OpenADR protocol. It serves as a near functional
equivalent of its predecessor, OpenADR 2.0b, but departs from the 2.0b SOAP-like web service design
and instead adheres to RESTful web service best practices. REST services are much more common
today than SOAP and are generally considered much more straightforward to use and troubleshoot. The
main goal in providing this version as a complement to 2.0b is to lower the barriers of entry for new
implementers and thereby encourage more widespread adoption of the standard as a whole.

Unless indicated otherwise, this document contains non-normative content and may contain
simplifications for the purpose of conveying the underlying OpenADR REST concepts. Normative content
can be found in the Normative References section.

2. Normative References

[OADR-3.0-Specification] OpenADR 3.0 OpenAPI YAML (SwaggerDoc) Specification,
https://github.com/oadr3/openapi-3.0.0

[SEMVER] Semantic Versioning https://semver.org

[ISO 8601] ISO date and time format. https://www.iso.org/iso-8601-date-and-time-format.html

[ISO 4217] ISO 4217 Currency Codes:
https://www.six-group.com/en/products-services/financial-information/data-standards.html#scrollTo=maint
enance-agency

[TLS] How SSL and TLS provide identification, authentication, confidentiality, and integrity,
https://www.ibm.com/docs/en/ibm-mq/7.5?topic=ssl-how-tls-provide-authentication-confidentiality-integrity

3. Informative References

[OADR-3.0-User_Guide] OpenADR 3.0 User Guide, Draft April 17, 2023

[OADR-3.0-Introduction] OpenADR 3.0 Introducting OpenADR 3.0, Draft April 17, 2023

[OADR-3.0-Reference_Implementation] OpenADR 3.0 Reference Implementation
https://github.com/oadr3/RI-3.0.0

[REST_Best_Practice] RESTful web API design (website)
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design

[CTA-2045-B] Modular Communications Interface for Energy Management, November 2020

[OpenAPI Auth] Authentication in OpenAPI https://swagger.io/docs/specification/authentication/

[REST-API-Best_Practices] REST API Security Essentials. https://dzone.com/refcardz/rest-api-security-1

[OAuth] The OAuth 2.0 Authorization Framework, 2012. https://www.rfc-editor.org/rfc/rfc6749

[JWT] JSON Web Token (JWT), 2015. https://www.rfc-editor.org/rfc/rfc7519

[Oauth2 Client Flow] OAuth 2.0 Client Credentials Grant. https://oauth.net/2/grant-types/client-credentials

Copyright © OpenADR Alliance (2023). All Rights Reserved

https://github.com/oadr3/openapi-3.0.0
https://semver.org
https://www.six-group.com/en/products-services/financial-information/data-standards.html%23scrollTo=maintenance-agency
https://www.six-group.com/en/products-services/financial-information/data-standards.html%23scrollTo=maintenance-agency
https://www.ibm.com/docs/en/ibm-mq/7.5?topic=ssl-how-tls-provide-authentication-confidentiality-integrity
https://github.com/oadr3/RI-3.0.0
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://swagger.io/docs/specification/authentication/
https://dzone.com/refcardz/rest-api-security-1
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7519
https://oauth.net/2/grant-types/client-credentials

OpenADR 3.0 Definitions - 4 -

[Client Flow Overview] Client Credentials Flow.
https://auth0.com/docs/get-started/authentication-and-authorization-flow/client-credentials-flow

[OADR3-RI] OpenADR 3.0.0 Reference Implementation. https://github.com/oadr3/RI-3.0.0

4. Terms and Definitions

OpenADR 3.0 adopts many terms from 2.0b directly, such as Event and Report. Terms that are new or
modified are:

● Program - The business context for a given usage of the VTN. May be a Demand Response
program, tariff, or other business construct.

● ProgramName - A unique name for a program or tariff. May be used by customers.
● Program Description - A human readable document provided out-of-band by a Business Logic

entity that specifies a usage of the OpenADR 3.0 object model and configuration details such as
VTN address, program names, applicable customer types, etc.

● Tariff - A type of program that defines the basic agreement between a retailer and a customer,
such as an electricity pricing structure, as opposed to optional programs offered on top of a tariff.

● Virtual Top Node (VTN) - An application that implements the OpenADR 3.0 APIs. This is a
Resource Server in REST parlance.

● Virtual End Node (VEN) - A software application that consumes events, generates reports, and
directly or indirectly causes changes in energy consumption patterns. This is a client of a VTN.

● Business Logic (BL) - Application logic embodied in one or more software applications deployed
by a utility, retailer, or other ‘program owner’ of the VTN that typically produces events and
consumes reports. It may be incorporated into the VTN resource server such that the business
logic application exposes the OpenADR 3.0 API.

● Customer Logic (CL) - Application logic that requests and responds to program and event
objects, produces reports, and may provide human facing features to support configuration and
monitoring. May be incorporated into the VEN client.

5. Overview

5.1. System Architecture

REST systems are composed of a Resource Server exposing a set of HTTP APIs and multiple clients of
the API. An OpenADR 3.0 VTN is a Resource Server, and like an OpenADR 2.0b VTN it provides a
mechanism for business logic of a utility or other entity to transmit events and receive reports to and from
an energy consuming client, known as a VEN.

OpenADR 3.0 defines a RESTful interface that is used by both business logic clients and customer logic
clients, aka VENs, which represent flexible loads and other customer devices. In this model, an OpenADR
3.0 Resource Server (VTN) provides a mechanism for business logic and energy consumers to exchange
events and reports. Figure 1 illustrates the canonical REST paradigm of server and clients, and how
OpenADR terms are applied to these constructs.

Copyright © OpenADR Alliance (2023). All Rights Reserved

https://auth0.com/docs/get-started/authentication-and-authorization-flow/client-credentials-flow
https://github.com/oadr3/RI-3.0.0

OpenADR 3.0 Definitions - 5 -

Figure 1. REST and its application to OpenADR

Business Logic (BL) is application software hosted by an energy retailer that integrates to the retailers
backend systems and interfaces with a VTN. It may also support an onboarding process, including a User
Interface, by which VENs are provided security credentials and other configuration information (e.g. VTN
URL).

Customer Logic (CL) uses a VEN client to obtain demand response events produced by BL and
subsequently manage a set of ‘resources’ such as flexible loads and customer devices. CL may expose a
User Interface to facilitate configuration and management of the VEN, e.g. configure VTN address.

An implementation of an OpenADR 3.0 system might incorporate Business Logic (BL) into a VTN, such
that certain API features are not used by the BL and instead implementation specific mechanisms are
used to support BL functions.

A tiered hierarchy of VTNs and VENs may also be supported, in which an entity acts as a VEN to interact
with a VTN, and then presents its own VTN to ‘downstream’ VENs. This is shown in Figure 2.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 6 -

Figure 2. OpenADR 3.0 example implementation scenarios

5.2. Local Scenarios

A common expected future usage of OpenADR will be for a central device in a building to receive
OpenADR events as a VEN, then rebroadcast these - possibly modified - to local flexible loads and other
devices. The term ‘local’ is applied to match IT usage as with a Local Area Network; this is distinct from
‘locational’ to refer to a geographic region, as with locational retail prices. The central device might be a
large building energy management system, a central hub for a collection of local devices (e.g. for the
Matter protocol), a microgrid controller, or even just a Wi-Fi access point. The device is then a VTN for the
local devices. This is an example of the use of a hierarchy of OpenADR links as in the right side of Figure
2.

There are several cases in which centralizing the reception of retail prices is beneficial. Only one device
needs to be aware of the identity of the retailer and tariff, so that if these change only one device needs to
be updated. Another case is when the customer wishes to incorporate the burden of greenhouse gas
emissions into the optimization of loads and other devices, and do so with a ‘local price’; the GHG value is
multiplied by a $/ton burden value and added to the retail price. The localPrice boolean in a program
description notifies downstream devices that the retail price has been modified. Another use of a central
device is to receive OpenADR signals over multiple communication channels for redundancy. Yet another
is for microgrid operation when the grid is down - the central device can be a microgrid controller and use
OpenADR events, e.g. prices, to balance supply and demand.

It is not anticipated that the OpenADR standard needs to be modified in any way to fully support local
operation, but any changes would be supplementary capabilities.

5.3. VEN enrollment

OpenADR relies on an out-of-band process by which Business Logic entities and VENs/Customer Logic
agree on the specifics of a ‘program’ or ‘tariff’. A ‘program description’ is developed by the BL entity that
specifies event structure, reporting requirements, and other details of a program or tariff. In general, VENs
must enroll with a BL entity to receive security credentials. These credentials are used by a VTN to
Authenticate and Authorize VEN requests. A VEN on a tariff and some programs may not need to be
authenticated to the VTN.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 7 -

A BL entity provides a web flow or other mechanism to onboard VENs into (non-tariff) programs. This
commonly involves action by the Customer. A VTN may choose to make some programs freely available,
such as those that are for a tariff and, for example, only distribute prices and similar information.

Every electric utility customer is on a tariff. This is often a default or assigned by the utility based on
customer characteristics. This assignment or selection of a tariff is the out-of-band process for a customer
that will then want to receive the prices for that tariff. Tariffs also have a program description as other
demand response coordination mechanisms have, though it is usually simpler.

6. Information Model

An Information Model is a conceptual representation of entities and relationships to facilitate human
communication; to be useful for machines it is translated to a data model. [OADR-3.0-Specification] is a
machine-readable YAML file providing the authoritative description of the protocol, including schema
components that define a concrete representation of the Information Model. While the YAML is
human-readable, the description here is provided as an easier to digest summary of the main data objects
defined in the Specification.

The specification document does not describe all aspects of the meaning of the data elements below.
Considerable detail on this is in the User Guide [OADR-3.0-User_Guide]. Examples of detail found there
are for payload descriptors, events, reports, interval timing, data quality, and targeting.

IDs for programs, events, and reports are created by the VTN when these objects are posted, and all
such IDs are unique within the VTN. Other identifiers are created out-of-band of OpenADR such as
clientID in report or created by the entity creating the object such as ID in interval.

Objects that are addressable through the API, i.e. can be accessed via <url>/path/{objectID}, contain an
ID attribute that is of type objectID, and creation and modification timestamps. These attributes are
populated by the VTN on object creation and modification.
In the listing below, any default value is listed in brackets after the definition.

program: Provides program specific metadata from VTN to VEN.
Id: VTN provisioned ID of this object instance.
createdDateTime: Creation time for object, e.g. "01012022:010000".
modificationDateTime: Modification time for object, e.g. "01012022:010000".
objectType: Used as discriminator. PROGRAM
programName: Name of program with which this event is associated, e.g. "ResTOU".
programLongName: User provided ID, e.g. "Residential Time of Use-A".
retailerName: Program defined ID, e.g. "ACME".
retailerLongName: Program defined ID, e.g. "ACME Electric Inc.".
programType: User defined string categorizing the program, e.g. "PRICING_TARIFF".
country: Alpha-2 code per ISO 3166-1, e.g. "US".
principalSubdivision: Coding per ISO 3166-2. E.g. state in US, e.g. "CO".
timeZoneOffset: Number of hours different from UTC for the standard time applicable to the

program, e.g. "PT7H". [null]
intervalPeriod: The temporal span of the program, could be years long.
programDescriptions: List of URLs to human and/or machine-readable content,

e.g. "mple: www.myCorporation.com/myProgramDescription".
bindingEvents: True if events are fixed once transmitted. [false]
localPrice: True if events have been adapted from a grid event. [false]
payloadDescriptors: An optional list of objects that provide context to payload types.
targets: An optional list of target objects.

report: report object.
id: VTN provisioned ID of this object instance.
createdDateTime: server provisions timestamp on object creation, e.g. "01012022:010000".

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 8 -

modificationDateTime: server provisions timestamp on object modification,
e.g. "01012022:010000".

objectType: Used as discriminator. REPORT
programID: ID attribute of program object this report is associated with.
eventID: ID attribute of event object this report is associated with.
clientName: String ID of client, may be VEN ID provisioned during program enrollment.
reportName: User defined string for use in debugging or UI, e.g. "Battery_usage_04112023".
payloadDescriptors: An optional list of objects that provide context to payload types.
resources: An array of objects containing report data for a set of resources.

resourceName: User generated identifier. A value of AGGREGATED_REPORT indicates an
aggregation of more than one resource's data.

intervalPeriod: Defines temporal aspects of intervals.
intervals: An object defining a temporal window and a list of payloads.

event: Event object to communicate a Demand Response request to VEN.
id: VTN provisioned ID of this object instance.
createdDateTime: server provisions timestamp on object creation, e.g. "01012022:010000".
modificationDateTime: server provisions timestamp on object modification,

e.g. "01012022:010000".
objectType: Used as discriminator. EVENT
programID: ID attribute of program object this event is associated with.
eventName: User defined string for use in debugging or UI, e.g. "price event 11-18-2022".
priority: relative priority of event. A lower number is a higher priority.
targets: An array of target objects.
reportDescriptors: An array of reportDescriptor objects. Used to request reports from VEN.
payloadDescriptors: An array of payloadDescriptor objects.
intervalPeriod: Defines default start and durations of intervals.
intervals: An array of interval objects

subscription: An object created by a client to receive notification of operations on objects.
id: VTN provisioned ID of this object instance.
createdDateTime: server provisions timestamp on object creation, e.g. "01012022:010000".
modificationDateTime: server provisions timestamp on object modification,

e.g. "01012022:010000".
objectType: Used as discriminator. SUBSCRIPTION
clientName: User generated identifier
programID: ID attribute of program object this subscription is associated with.
objectOperations: list of objects and operations to subscribe to.

objects: List of objects to subscribe to.
operations: list of operations to subscribe to.
callbackUrl: User provided webhook URL.
bearerToken: User provided token.

ven: Ven represents a client with the ven role.
id: VTN provisioned ID of this object instance.
createdDateTime: server provisions timestamp on object creation, e.g. "01012022:010000".
modificationDateTime: server provisions timestamp on object modification,

e.g. "01012022:010000".
objectType: Used as discriminator. VEN
venName: String identifier for VEN. VEN may be configured with ID out-of-band.
attributes: A list of valuesMap objects describing attributes.
targetValues: A string representing a target identifier, e.g. "group1".
resources: A list of resource objects representing end-devices or systems.

resource: a resource is an energy device or system subject to control by a VEN.
id: VTN provisioned ID of this object instance.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 9 -

createdDateTime: server provisions timestamp on object creation, e.g. "01012022:010000".
modificationDateTime: server provisions timestamp on object modification,

e.g. "01012022:010000".
objectType: Used as discriminator. RESOURCE
resourceName: String identifier for resource. resource may be configured with ID out-of-band.
venID: VTN provisioned on object creation based on path
attributes: A list of valuesMap objects describing attributes.
targetValues: a string representing a target identifier, e.g. "group1".

interval: An object defining a temporal window and a list of payloads.
id: A client generated number assigned an interval object. Not a sequence number. [0]
intervalPeriod: Defines temporal aspects of intervals.
payloads: An array of payload objects.

intervalPeriod: Defines temporal aspects of intervals.
start: The start time of an interval or set of intervals, e.g. "2001-12-17T09:30:47Z".
duration: The duration of an interval or set of intervals, e.g. "PT1H".
randomizeStart: Indicates a randomization time that may be applied to start, e.g. "PT5M".

valuesMap: Represents one or more values associated with a type.
type: Enumerated or private string signifying the nature of values, e.g. "PRICE".
values: : A sequence of data points. Most often a singular value such as a price. [None]

point: A pair of floats typically used as a point on a 2 dimensional grid.
x: a value on an x axis
y: a value on a y axis

eventPayloadDescriptor: Contextual information used to interpret event payload values.
payloadType: Enumerated or private string signifying the nature of values, e.g. "PRICE".
units: units of measure, e.g. "KWH".
currency: currency of price payload, e.g. "USD".

reportPayloadDescriptor: Contextual information used to interpret report payload values.
payloadType: Enumerated or private string signifying the nature of values, e.g. "USAGE".
readingType: Enumerated or private string signifying the type of reading,

e.g. "DIRECT_READ". ["DIRECT_READ"]
units: units of measure, e.g. "KWH".
accuracy: a quantification of the accuracy of a set of payload values.
confidence: a quantification of the confidence in a set of payload values.

reportDescriptor: An object that may be used to request a report from a VEN.
payloadType: Enumerated or private string signifying the nature of values, e.g. "USAGE".
readingType: Enumerated or private string signifying the type of reading, e.g. "DIRECT_READ".
targets: An array of target objects.
aggregate: True if report should aggregate results from all targeted resources [false]
startInterval: The interval on which to generate a report. [-1]
numIntervals: The number of intervals to include in a report. [-1]
historical: True indicates report on intervals preceding startInterval. [true]
frequency: Number of intervals that elapse between reports. [-1]
repeat: Number of times to repeat a report. [1]

target: Indicates a type of target and corresponding resource ID.
targetType: Enumerated or private string signifying the type of target, e.g. "VEN_ID".
values: a sequence of targeting values, e.g. "["VENID999"]".

objectID: URL safe VTN assigned object ID.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 10 -

notification: the object that is the subject of the notification.
objectType: type of object being returned, i.e. PROGRAM, EVENT, REPORT, e.g. "EVENT".
operation: the operation on on object that triggered the notification, e.g. "POST".
object: the object that is the subject of the notification.

objectTypes: Types of objects addressable through API.

dateTime: datetime in ISO 8601 format

duration: duration in ISO 8601 format

problem: reusable error response. From https://opensource.zalando.com/problem/schema.yaml
type: An absolute URI that identifies the problem type. When dereferenced, it SHOULD provide

human-readable documentation for the problem type (e.g., using HTML).
e.g. "'https://zalando.github.io/problem/constraint-violation'". ['about:blank']

title: A short summary of the problem type. Written in english and readable, e.g. "".
status: The HTTP status code generated by the origin server for this occurrence.
detail: A human readable explanation specific to this occurrence of the problem,

e.g. "Connection to database timed out".
instance: An absolute URI that identifies the specific occurrence of the problem, e.g. "".

7. EndPoints

A REST API provides URLs that clients use to perform CRUD operations on ‘resources’; this is a URL
path but usually called an ‘endpoint’. Object instances of the items described by the Information Model
above are ‘resources’, and CRUD operations are Create, Read, Update, and Destroy, implemented by the
HTTP verbs POST, GET, PUT, and DELETE. There is copious free information on the web regarding
REST APIs. One good example for background is [REST_Best_Practice].

The YAML document [OADR-3.0-Specification] provides the authoritative and complete definition of the
endpoint and operations supported by the profile. For programs and events, only the BL will do POST,
PUT, and DELETE operations. Only VENs will POST and PUT reports and subscriptions.

POST is used to create new objects, and PUT is used to update an existing object. objectID and
createdDateTime values included in representations used in POST and PUT requests will be ignored by
the VTN server.

The text below is a heavily subsetted version of the specification that summarizes only the essential
information for human readability. The term ‘security’ below indicates the scopes necessary to perform the
associated operation. Scopes are discussed elsewhere.

The security terms below (e.g. “security: [read_all]”) indicate the access permissions required to perform
an operation. From the specification:

read_all: VENs and BL can read all resources
write_programs: only BL can write to programs
write_events: only BL can write to events
write_reports: only VENs can write reports
write_subscriptions: only VENs can write subscriptions
write_vens: VENS and BL can write to vens and resources

/programs:
get:
description: List all programs known to the server.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 11 -

security: [read_all]
query parameters: targetType targetValues skip limit

post:
description: Create a new program in the server.
security: [write_programs]
requestBody: program

/programs/{programID}:
get:
description: Fetch the program specified by the programID in path.
security: [read_all]

put:
description: Update an existing program with the programID in path.
security: [write_programs]
requestBody: program

delete:
description: Delete an existing program with the programID in path.
security: [write_programs]

/reports:
get:
description: List all reports known to the server.
security: [read_all]
query parameters: programID clientName skip limit

post:
description: Create a new report on the server.
security: [write_reports]
requestBody: report

/reports/{reportID}:
get:
description: Fetch the report specified by the reportID in path.
security: [read_all]

put:
description: Update the report specified by the reportID in path.
security: [write_reports]
requestBody: report

delete:
description: Delete the program specified by the reportID in path.
security: [write_reports]

/events:
get:
description: List all events known to the server. May filter results by programID query param.
security: [read_all]
query parameters: programID targetType targetValues skip limit

post:
description: Create a new event in the server.
security: [write_events]
requestBody: event

/events/{eventID}:
get:
description: Fetch event associated with the eventID in path.
security: [read_all]

put:

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 12 -

description: Update the event specified by the eventID in path.
security: [write_events]
requestBody: event

delete:
description: Delete the event specified by the eventID in path.
security: [write_events]

/subscriptions:
get:
description: List all subscriptions.
security: [read_all]
query parameters: programID clientName targetType targetValues objectTypes skip limit

post:
description: Create a new subscription.
security: [write_subscriptions]
requestBody: subscription

/subscriptions/{subscriptionID}:
get:
description: Return the subscription specified by subscriptionID specified in path.
security: [read_all]

put:
description: Update the subscription specified by subscriptionID specified in path.
security: [write_subscriptions]

delete:
description: Delete the subscription specified by subscriptionID specified in path.
security: [write_subscriptions]

/vens:
get:
description: List all vens.
security: [read_all]
query parameters: targetType targetValues skip limit

post:
description: Create a new ven.
security: [write_vens]
requestBody: ven

/vens/{venID}:
get:
description: Return the ven specified by venID specified in path.
security: [read_all]

put:
description: Update the ven specified by venID specified in path.
security: [write_vens]

delete:
description: Delete the ven specified by venID specified in path.
security: [write_vens]

/vens/{venID}/resources:
get:
description: Return the ven resources specified by venID specified in path.
security: [read_all]
query parameters: targetType targetValues skip limit

post:
description: Create a new resource.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 13 -

security: [write_vens]
requestBody: resource

/vens/{venID}/resources/{resourceID}:
get:
description: Return the ven resource specified by venID and resourceID specified in path.
security: [read_all]

put:
description: Update the ven resource specified by venID and resourceID specified in path.
security: [write_vens]

delete:
description: Delete the ven resource specified by venID and resourceID specified in path.
security: [write_vens]

/auth/token:
get:

description: client ID to exchange for bearer token.
query parameters: clientID clientSecret

8. Revision

REST APIs may be designed to be revised and preserve backwards compatibility. Typically, the base
URL will contain a version number, e.g. https://myAPI/1.0.0/, with 1.0.0 as a version number. A revision to
the API can be given a new version number and hosted at a new base URL, e.g https://myAPI/1.0.1/. A
VTN could offer both versions concurrently, allowing older clients to interoperate with the older version
while upgrading to the new version at a time of their choosing. Typically, an older version will be
deprecated after some period of time. While there is currently no plan to revise OpenADR 3.0, doing so
with this mechanism would be easy to implement.

Versioning will follow Semantic Versioning [SEMVER] guidelines where a version number is of the form
major.minor.patch and each may be incremented as follows:

1. MAJOR version when you make incompatible API changes
2. MINOR version when you add functionality in a backwards compatible manner
3. PATCH version when you make backwards compatible bug fixes

9. Extensibility

The OpenADR 3.0 protocol allows servers and clients to interoperate without custom integration. It is
intended to provide a functional footprint that is sufficient to accommodate all common demand response
use cases. However, some demand response program developers may find it useful to use content that
cannot be expressed using the constructs of the specification, or could be expressed in a better form with
an extension.

There are two extension mechanisms offered by OpenADR 3.0: model extensions, and private strings.

9.1. Model Extension

A VTN and clients might agree to private model extensions by adding constructs to the standard models.
VTNs that are ignorant of such private extensions will simply ignore content and underlying functionality
that represents such private extensions.

Copyright © OpenADR Alliance (2023). All Rights Reserved

https://myapi/1.0.0/
https://myapi/1.0.0/

OpenADR 3.0 Definitions - 14 -

The example in Figure 3 shows an event object with a non-standardized attribute called myPrivateObject.
This attribute will be ignored by VTNs that do not recognize it.

{
"ID": 1,
"createdDateTime": "09:12:28",
"modificationDateTime": "0",
"myPrivateObject": "whatever I want",
....

}

Figure 3. Example Event object

9.2. Private Strings

The standard provides enumerated values for a number of object fields. These enumerations have
defined semantics. A VTN and clients may agree on additional values that can be supplied in these fields.

The example below shows a report payload object with the non-standardized string
PRIVATE_ALGORITHM. VTNs do not process attribute values, so the use of non-standard strings does
not affect the behavior of the VTN but both Business Logic and VEN clients must process their agreed
upon strings.

"payloads": [
{
"type": "PRIVATE_ALGORITHM",
"values": [0.17]

},

Figure 4. Example Private String

10. Enumerations

10.1. Introduction

A critical feature of OpenADR is the use of enumerations that provide context to payload values. For
example, a payload value of ‘0.17’ must be associated with context in order for a client to know that it is a
price, or percent, or other type of data. OpenADR 3.0 uses enumerated strings to provide context to data.
These strings enable BL and VENs to interoperate. Note that payload values are always an array and so
enclosed in brackets (“[...]”) even if just a single value.

VENs that support standard enumerations should interoperate with BL that generates events with those
values, and conversely generate reports that can be consumed by BL that support them. A program may
define its own strings and work with VEN partners as they implement the appropriate logic (see Private
Extensions in [OADR-3.0-User_Guide]).

OpenADR 3.0 defines enumerations for those use cases that are well described, are in use today, and/or
are plausible for use in the near future. Notes in definitions are not part of the formal definition but include
useful information and context.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 15 -

The term “enumeration" is used in its common form as simply indicating lists, and not in the computer
science sense of mapping numbers to names. There is no utility in OpenADR to assign numeric values to
the strings defined here as enumerations.

10.2. Event Payload Enumerations

The following defined names and types inform a VEN on how to interpret values in an event interval
payload. The enumerations may be assigned to the payloadType attribute of a payload included in an
interval included in an event and in an associated payloadDescriptor in the Event or Program. For
example:

{
...
"payloadDescriptors": [
{ "payloadType": "PRICE", "units": "KWH", "currency": "USD"}

],
"intervals": [
{
...
"payloads": [
{
"type": "PRICE",
"values": [0.17]

}
}

]
}

Figure 5. Example Event

Table 1. Event Enumerations
Event payload type Definition

SIMPLE An indication of the level of a basic demand response signal. Payload
value is an integer of 0, 1, 2, or 3.
Note: An example mapping is normal operations, moderate load shed,
high load shed, and emergency load shed.

PRICE The price of energy. Payload value is a float. Units and currency
defined in associated eventPayloadDescriptor.
Note: Can be used for any form of energy.

CHARGE_STATE_SETPOINT The state of charge of an energy storage resource. Payload value is
indicated by units in associated eventPayloadDescriptor.
Note: Common units are percentage and kWh.

DISPATCH_SETPOINT The absolute amount of consumption by a resource. Payload value is
a float and is indicated by units in associated eventPayloadDescriptor.
Note: This is used to dispatch resources.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 16 -

DISPATCH_SETPOINT_REL
ATIVE

The relative change of consumption by a resource. Payload value is a
float and is indicated by units in associated eventPayloadDescriptor.
Note: This is used to dispatch a resource’s load.

CONTROL_SETPOINT Resource dependent setting. Payload value type depends on
application.

EXPORT_PRICE The price of energy exported (usually to the grid). Payload value is
float and units and currency are defined in associated
eventPayloadDescriptor.
Note: Can be used for any form of energy.

GHG An estimate of marginal GreenHouse Gas emissions, in g/kWh.
Payload value is float.

CURVE Payload values array contains a series of one or more pairs of floats
representing a 2D point.
Note: May be used to represent a curve of values, e.g. VoltVar values.

OLS Optimum Load Shape. Payload values array contains a list of values
0.0 to 1.0 representing percentage of usage over the set of intervals in
the event.
Note: See ANSI-SCTE 267.

IMPORT_CAPACITY_SUBSC
RIPTION

The amount of import capacity a customer has subscribed to in
advance. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

IMPORT_CAPACITY_RESER
VATION

The amount of additional import capacity that a customer has been
granted by the VTN. Payload is a float, and meaning is indicated by
units in associated eventPayloadDescriptor.

IMPORT_CAPACITY_RESER
VATION_FEE

The cost per unit of power of extra import capacity available for
reservation. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

IMPORT_CAPACITY_AVAILA
BLE

The amount of extra import capacity available for reservation to the
customer. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

IMPORT_CAPACITY_AVAILA
BLE_PRICE

The cost per unit of power of extra import capacity available for
reservation. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

EXPORT_CAPACITY_SUBS
CRIPTION

The amount of export capacity a customer has subscribed to in
advance. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

EXPORT_CAPACITY_RESE
RVATION

The amount of additional export capacity that a customer has been
granted by the VTN. Payload is a float, and meaning is indicated by
units in associated eventPayloadDescriptor.

EXPORT_CAPACITY_RESE
RVATION_FEE

The cost per unit of power of extra export capacity available for
reservation. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 17 -

EXPORT_CAPACITY_AVAIL
ABLE

The amount of extra export capacity available for reservation to the
customer. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

EXPORT_CAPACITY_AVAIL
ABLE_PRICE

The cost per unit of power of extra export capacity available for
reservation. Payload is a float, and meaning is indicated by units in
associated eventPayloadDescriptor.

IMPORT_CAPACITY_LIMIT The maximum import level for the site. Payload is a float and meaning
is indicated by units in associated eventPayloadDescriptor.

EXPORT_CAPACITY_LIMIT The maximum export level for the site. Payload is a float and meaning
is indicated by units in associated eventPayloadDescriptor.

ALERT_GRID_EMERGENCY There is an imminent risk of the grid failing to continue supplying
power to some customers, maintaining operational parameters (e.g.
voltage), or ceasing to operate at all. Payload value contains a
human-readable string describing the alert.

ALERT_BLACK_START The grid is in the process of resuming full operation. Devices should
minimize electricity use until the event is cleared. Payload value
contains a human-readable string describing the alert.

ALERT_POSSIBLE_OUTAGE Customers may lose grid power in the coming hours or days.
Note: An example of this from California is Public Service Power
Shutoffs (usually from fire risk). Payload value contains a
human-readable string describing the alert.

ALERT_FLEX_ALERT Power supply will be scarce during the event. Devices should seek to
shift load to times before or after the event. Devices that can shed
should do so during the event. Payload value contains a
human-readable string describing the alert.
Note: See: flexalert.org

ALERT_FIRE There is a substantial risk of fire in the area which could interrupt
electricity supply in addition to being a danger to life and property.
Payload value contains a human-readable string describing the alert.

ALERT_FREEZING There is (or is forecast to be) temperatures low enough to be of
concern. Payload value contains a human-readable string describing
the alert.

ALERT_WIND There is (or is forecast to be) wind speeds high enough to be of
concern. Includes hurricanes. Payload value contains a
human-readable string describing the alert.

ALERT_TSUNAMI Tsunami waves expected to hit the coastline. Payload value contains a
human-readable string describing the alert.

ALERT_AIR_QUALITY Air quality is or is forecast to be. Payload value contains a
human-readable string describing the alert.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 18 -

ALERT_OTHER No specific definition. See associated text data element. Payload value
contains a human-readable string describing the alert.

CTA2045_REBOOT Pass through for resources that support [CTA-2045B]. Payload value 0
= SOFT, 1 = HARD. See [CTA-2045B] for definitions.

CTA2045_SET_OVERRIDE_
STATUS

Pass through CTA-2045 Override status: 0 = No Override, 1 =
Override. See [CTA-2045B].

10.3. Report Enumerations

The following enumerations may be assigned to the payloadType attribute of a payload included in an
interval included in a report. For example:

{
...
"intervals": [
{

"ID": 0,
"payloads": [
{
"type": "USAGE",
"values": [0.10]

}
}

]
}

Figure 6. Example Event

Table 2. Report Enumerations
Report payload Type Definition

READING An instantaneous data point, as from a meter. Same as pulse count. Payload
value is a float and units are defined in payloadDescriptor.

USAGE Energy usage over an interval. Payload value is a float and units are defined in
payloadDescriptor.

DEMAND Power usage for an interval, i.e. Real Power. Payload value is a float, units
defined in payloadDescriptor. Reading type indicates MEAN, PEAK,
FORECAST.

SETPOINT Current control setpoint of a resource, see CONTROL_SETPOINT event
payloadType above. Payload values are determined by application.

DELTA_USAGE Change in usage as compared to a baseline. Payload value is a float and units
are defined in payloadDescriptor.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 19 -

BASELINE Indicates energy or power consumption in the absence of load control.
Payload value is determined by reading type which may indicate usage or
demand.

OPERATING_STATE Payload values array includes a list of operating state enumerations, see
below.

UP_REGULATION_AV
AILABLE

Up Regulation capacity available for dispatch, in real power. Payload value is a
float, units defined in payloadDescriptor. Reading type indicates MEAN, PEAK,
FORECAST.

DOWN_REGULATION
_AVAILABLE

Down Regulation capacity available for dispatch, in real power. Payload value
is a float, units defined in payloadDescriptor. Reading type indicates MEAN,
PEAK, FORECAST.

REGULATION_SETPO
INT

Regulation setpoint as instructed as part of regulation services. Payload value
is a float, units defined in payloadDescriptor. Reading type indicates MEAN,
PEAK, FORECAST.

STORAGE_USABLE_
CAPACITY

Usable energy that the storage device can hold when fully charged. Payload
value is a float, units of energy defined in payloadDescriptor.

STORAGE_CHARGE_
LEVEL

Current storage charge level expressed as a percentage, where 0% is empty
and 100% is full. Payload value is a float, units of PERCENT defined in
payloadDescriptor.

STORAGE_MAX_DIS
CHARGE_POWER

The maximum sustainable power that can be discharged into an electricity
network (injection). Payload value is a float, units of power defined in
payloadDescriptor.

STORAGE_MAX_CHA
RGE_POWER

The maximum sustainable power that can be charged from an electricity
network (load). Payload value is a float, units of power defined in
payloadDescriptor.

SIMPLE_LEVEL Simple level that a VEN resource is operating at for each Interval. Payload
value is an integer 0, 1, 2, 3 corresponding to values in SIMPLE events.

USAGE_FORECAST Payload values array contains a single float indicating expected resource
usage for the associated interval. Units of energy defined in payloadDescriptor.

STORAGE_DISPATCH
_FORECAST

Payload values array contains a single float indicating expected stored energy
that could be dispatched for the associated interval.

LOAD_SHED_DELTA_
AVAILABLE

Payload values array contains a single float indicating expected increase or
decrease in load by a resource for the associated interval.

GENERATION_DELTA
_AVAILABLE

Payload values array contains a single float indicating expected generation by
a resource for the associated interval.

DATA_QUALITY Payload values array contains a string indicating data quality of companion
report payload in the same interval. Strings may be one of enumerated Data
Quality enumerations.

IMPORT_RESERVATI
ON_CAPACITY

Amount of additional import capacity requested. Payload values are a float.

IMPORT_RESERVATI
ON_FEE

Amount per unit of import capacity that the VEN is willing to pay for the
requested reservation. Payload value is a float with currency defined in

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 20 -

payloadDescriptor.

EXPORT_RESERVATI
ON_CAPACITY

Amount of additional export capacity requested. Payload values are a float.

EXPORT_RESERVATI
ON_FEE

Amount per unit of export capacity that the VEN is willing to pay for the
requested reservation. Payload value is a float with currency defined in
payloadDescriptor.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 21 -

10.4. Reading Type Enumerations

These labels are qualifiers to report name labels, to indicate the nature of the reported value.
DIRECT_READ is the default, if the qualifier is absent. Note that these apply to the data source in
general, not to specific intervals.

Reading types are used in payloadDescriptor objects to provide context to associated payloads. For
example:

payloadDescriptor
{"payloadType": "USAGE", "readingType": "DIRECT_READ", "units": "KWH"}

valuesMap
{"type": "USAGE", "values":[0.17]}

Figure 7. Example Reading Types as used in reportPayloadDescriptor and in report payload

Table 3. Reading Type Enumerations
Reading type Definition

DIRECT_READ Payload values have been determined by direct measurement from a resource.

ESTIMATED Payload value is an estimate where no Direct Read was available for the
interval, but sufficient other data exist to make a reasonable estimate.

SUMMED Payload value is the sum of multiple data sources.

MEAN Payload value represents the mean measurements over an interval.

PEAK Payload value represents the highest measurement over an interval.

FORECAST Payload value is a forecast of future values, not a measurement or estimate of
actual data.

AVERAGE Payload value represents the average of measurements over an interval.

10.5. Operating State Enumerations

These definitions characterize the operating state of a resource under control of a VEN.

Table 4. Operating State Enumerations
Operating State Definition

NORMAL Resource is operating normally. No Demand Response directives are
currently being followed.

ERROR Resource has self-reported an error or is not addressable by VEN.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 22 -

IDLE_NORMAL CTA-2045 device “Indicates that no demand response event is in effect
and the SGD has no/insignificant energy consumption.”

RUNNING_NORMAL CTA-2045 device “Indicates that no demand response event is in effect
and the SGD has significant energy consumption.”

RUNNING_CURTAILED CTA-2045 device “Indicates that a curtailment type demand response
event is in effect and the SGD has significant energy consumption.”

RUNNING_HEIGHTENED CTA-2045 device “Indicates that a heightened-operation type of demand
response event is in effect and the SGD has significant energy
consumption.”

IDLE_CURTAILED CTA-2045 device “Indicates that a curtailment type demand response
event is in effect and the SGD has no/insignificant energy consumption.”

SGD_ERROR_CONDITION CTA-2045 device “Indicates that the SGD is not operating because it
needs maintenance support or is in some way disabled (i.e. no response
to the grid).”

IDLE_HEIGHTENED CTA-2045 device “Indicates that a heightened-operation type of demand
response event is in effect and the SGD has no/insignificant energy
consumption.”

IDLE_OPTED_OUT CTA-2045 device “Indicates that the SGD is presently opted out of any
demand response events and the SGD has no/insignificant energy
consumption.”

RUNNING_OPTED_OUT CTA-2045 device “Indicates that the SGD is presently opted out of any
demand response events and the SGD has significant energy
consumption.”

10.6. ResourceName Enumerations

Table 5. resourceName Enumeration

AGGREGATED_REPOR
T

A report contains a list of resources, each of which may contain a list of
intervals containing reporting data. Each item in the resource list contains a
resourceName attribute. This resourceName indicates the the interval data
is the aggregate of data from more than one resource.

10.7. Data Quality Enumerations

These can be used to qualify report payloads, to indicate the status of individual interval values. These
are values that may be used in payloads of type DATA_QUALITY.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 23 -

{
...
"intervals": [
{

"payloads": [
{"type": "USAGE", "values": [0]},
{"type": "DATA_QUALITY", "values": ["MISSING"]}

]
}

]
}

Figure 8. Example Data Quality as used in a Report

Table 6. Data Quality Enumerations
Data quality
values

Definition

OK There are no known reasons to doubt the validity of the data.

MISSING The data item is unavailable for this interval.

ESTIMATED This data item has been estimated from other relevant information such as adjacent
intervals.

BAD There is a data item but it is known or suspected to be erroneous.

10.8. Target Enumerations

VENs, resources, subscriptions, events and programs may include a targets array, each element defining
a targeting type and a set of appropriate values. Targeting values may be used to selectively read a
subset of objects.

target

{"type": "VEN_NAME", "values": [“VEN-999"]}

Figure 9. Example Target

Table 7. Target Enumerations
label description

POWER_SERVICE_L
OCATION

A Power Service Location is a utility named specific location in geography or
the distribution system, usually the point of service to a customer site.

SERVICE_AREA A Service Area is a utility named geographic region. Target values array
contains a string representing a service area name.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 24 -

GROUP Target values array contains a string representing a group.

RESOURCE_NAME Target values array contains a string representing a resource name.

VEN_NAME Target values array contains a string representing a VEN name.

EVENT_NAME Target values array contains a string representing an event name.

PROGRAM_NAME Target values array contains a string representing a program name.

10.9. Attribute Enumerations

VEN and resource representations may include a list of attributes, based on the valueMap object

attribute

{"type": "LOCATION", "values": [40.57, -73.96]}

Figure 9. Example Attribute

Table 7. Attribute Enumerations
label description

LOCATION Describes a single geographic point. Values[] contains 2 floats, generally
representing longitude and latitude. Demand Response programs may define
their own use of these fields.

AREA Describes a geographic area. Values[] contains application specific data.
Demand Response programs may define their own use of these fields, such
as GeoJSON polygon data.

MAX_POWER_CONSU
MPTION

Values contains a floating point number describing the maximum
consumption, in kiloWatts.

MAX_POWER_EXPOR
T

Values contains a floating point number describing the maximum power the
device can export, in kiloWatts.

DESCRIPTION Free-form text tersely describing a ven or resource.

10.10. Unite Enumerations

Units are used in payloadDescriptor objects to provide context to associated payloads.

eventPayloadDescriptor

{"payloadType": "PRICE", "units": "KWH", "currency": "USD"}

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 25 -

valuesMap

{"type": "PRICE", "values":[0.17]}

Figure 10. Example Units used in eventPayloadDescriptor and payload

Table 8. Unit Enumerations
label description

KWH kilowatt-hours (kWh)

GHG Greenhouse gas emissions: g/kWh

VOLTS volts (V)

AMPS Current (A)

CELSIUS Temperature (C)

FAHRENHEIT Temperature (F)

PERCENT %

KW kilowatts (kW)

KVAH kilovolt-ampere hours (kVAh)

KVARH kilovolt-amperes reactive hours (kVARh)

KVA kilovolt-amperes (kVA)

KVAR kilovolt-amperes reactive (kVAR)

10.11. Currency Enumerations

Currency is used in payloadDescriptor objects to provide context to associated payloads. See example
above in the section titled “Units Enumerations”.

Currency denominations adhere to the ISO 4217 standard [ISO 4217]. Also available on the web section
[ISO 4217] - Currency Code Maintenance: Get the Correct Currency Code under ”List One (XLS)”.

11. Security

Security in OpenADR addresses the Authentication and Authorization of client requests to the VTN
server. Common REST API best practices are followed, and the Oauth2 client credential flow describes
the mechanism to secure the API.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 26 -

11.1. Security objectives

The overall approach to security in OpenADR 3.0 is based on the following three pillars.
● Authentication. A client request must be Authenticated with a VTN in order to access

resources1. REST servers are ‘stateless’ and do not maintain session state, therefore every API
request must contain some token or credential to allow the VTN server to authenticate the identity
of the requestor.

● Authorization. Within the context of a given program, a VEN will be authorized to access some
set of resources and associated operations. The VTN server will limit access to resources and
associated operations to those authorized to a requestor, based on the identity of the requestor.
See Authentication above.

● Common (well known and widely implemented) Security Model. OADR REST adopts
common industry approaches to Authentication and Authorization. [REST-API-Best_Practices]

11.2. Assumptions

The following specific assumptions underlie the OpenADR 3.0 security model.
● VTN security must meet stringent requirements. Every client request must be authenticated and

access to API resources and operations must be authorized.
○ VTNs are software applications that do not directly interface with any element of the grid.

As an information service provided by a utility retailer, the VTN provides APIs to allow the
retailer to ‘publish’ information it deems appropriate to share with customers and other
interested parties. There is no mechanism by which a VTN (if restricted to implement only
its function as a resource server) or its clients may interact with other components of a
utility's systems.

● VTN clients include utility Business Logic and VENs; therefore a security solution must work for
both scenarios.

○ Client requests must be associated with a client role, and roles define what operations on
what API objects a given client may perform. For example, a Business Logic client may
create an event, but a VEN cannot. Both can read an event, but a VEN can only read
events associated with the programs it is entitled to access.

● VENs may be implemented within on-site customer devices such as a water heater, external
hardware controllers, or a central device. VENs may also be implemented in servers in the cloud.

○ This implies that certifying devices and provisioning x.509 certs or other PKI (Public Key
Infrastructure) as detailed in OpenADR 2.0b is daunting at best, or simply not
supportable.

○ A REST API requires some form of application level credential exchange to authenticate
and authorize client requests. Even where PKI may be required, it is not sufficient to
address access control of API objects.

● Devices (OpenADR ‘resources’) represented by VENs are owned by a utility customer, who has a
customer account with the utility.

○ A utility may require that for a customer to participate in a DR program they must enroll
their account in the program, and may need to register their ‘resources’ or devices into
the program.

● VENs must be manually provisioned with a VTN address that has been provided by the utility
retailer.

○ This implies that there is no plug-n-play scenario in which a customer owned device
simply begins to participate in a conventional demand response program without some
manual configuration. Therefore, the device must present a web UI or other interface to a
customer. (Much like a home router presents a web app at a known address).

1 Note that VTNs may provide some endpoints with no access restrictions for freely available information
such as prices for common tariffs.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 27 -

○ A typical means to acquire a VTN address would be for a customer to login in to their
utility account and obtain the address as part of the enrollment and registration flow
described in the bullet above.

○ Methods to automate and standardize this are under consideration by the OpenADR
Alliance but separate from the OpenADR 3.0 standard itself. This could be particularly
applicable for automated discovery of price servers with only the identity of a retailer or
tariff, or completely automated discovery of a price server local to a customer site.

● Business Logic and VEN clients must be provisioned with client secrets or other credentials prior
to accessing a VTN.

● A VTN may be configured to allow ‘unregistered’ VENs to access the API. This model is
particularly applicable for the subset of programs that are tariffs and so the information involved is
freely available.

○ A customer device may be minimally configured, e.g. just a VTN address that includes
the retailer and tariff ID, to read price and related events. In this scenario, the VEN may
present some sort of generic credential (perhaps an OpenADR token provided at
certification) which the VTN accepts for read access to some programs.

○ Such a VTN may limit such access only to a subset of programs.

11.3. Client Scenarios

The choice of security protocol(s) depends in part on what client scenarios are anticipated.

A protocol that is difficult and error prone for end users to support represents a security threat in itself; it
must be considered that humans may be engaged in creating accounts, obtaining credentials and tokens,
and so on. There is a big difference in what can be supported by IT professionals as opposed to the
average customer.

OpenADR 2.0b relies on x509 certificates provisioned into the OS of VTNs and VENs. This is most
appropriate for commercial server to server communications, as acquiring, provisioning, and maintaining
such certs is generally considered overly complex for use in consumer owned devices. X509 certs may
also be useful in scenarios where a consumer device has factory installed certs.

VEN client platforms include:
● Cloud-based applications managed by IT professionals, e.g. a DER aggregator, product

manufacturer, or other cloud-based service provider. Public cloud environments do not lend
themselves to device-level authentication as per x.509 as installing and managing such certs is
impractical.

● Commercial servers on site managed by IT professionals, e.g. a building or energy management
system, or even a device as simple as a Wi-Fi access point.

● External control device for a single customer device such as a gateway device of some sort. Such
environments do not lend themselves to device-level authentication as per x.509 as installing and
managing such certs is impractical.

● Appliance or other customer device such as a water heater, refrigerator, in-home battery, or EV.
These may be provisioned with security certificates or otherwise configured before installation at
a customer site, or provisioned remotely by an IT professional.

Note that a VEN may directly control a device, may translate grid signals into device control signals that it
passes on, or may pass along grid signals with a subsidiary VTN/VEN relationship or via another
in-building protocol (e.g. BacNET or Matter).

11.4. HTTPS/TLS

VTN should use ‘HTTP over TLS’, or HTTPS. Transport Layer Security [TLS] is required to encrypt all
messages ‘on the wire’. Because of the wide variety of platforms that may host a VEN and the user

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 28 -

experience issues that could inhibit provisioning of client certs in every scenario, server-side certs are
required, but client-side certs are not.

TLS 1.2 is required. TLS 1.3 or later is optional. As technology progresses, these requirements may be
updated.

It is the responsibility of the service provider hosting the OpenADR implementation to maintain a secure
web platform. This includes updating TLS ciphers when appropriate.

11.5. API Gateway

A production VTN might deploy with an API gateway to implement rate limiting and perhaps other
features. Rate limiting blocks requests after a certain number within a given time period from a given IP
address, thus mitigating Denial of Service attacks.

11.6. OAuth 2.0 client credential flow

Authenticated clients must implement the OAuth2 [OAuth] client credential flow in which an offline (from
the REST interactions) process provides a client ID to the VEN and associates the VEN with a role and
associated Access Controls in the VTN. At runtime the VEN trades the ID for a short-lived token, which
the VTN uses to Authenticate the client, and therefore Authorize access to certain resources. The VTN
uses the token to determine which programs or tariffs may be accessed by the VEN.

OAuth2 Client Credentials Flow [Oauth2 Client Flow] is designed to help facilitate Authentication &
Authorization for a Machine To Machine application. While OAuth itself does not specify the format of the
Access Token, the most common format used is a JSON Web Token (JWT [JWT]) and this is
advantageous for use in OpenADR 3.0.

The Authentication / Authorization process is as follows:
● A client is provided a client ID and secret via an out-of-band process. In the case of a VEN, a

utility customer may engage with their energy retailer via web flow or other process to obtain
these values, and then provision the VEN with them.

● The client makes a call to an Authorization server with a ClientId and ClientSecret.
● The Authorization server provides a value (typically Nonce).
● The client provides the Nonce value to the Authorization server and receives a short-lived API

access token.
● The VEN client then makes a request to VTN API resource with the access token (in header

“Authorization: Bearer <token>”)
● The VTN verifies the token and returns an Unauthorized response if invalid or expired.
● The VTN determines the client role from the API token and applies fine-grained access control.

For example, a VEN client not being allowed to create event objects.

The following is a simplified view of the client credential flow for VENs. This does not include details such
as coordinating the Authentication server with Business Logic web flow to share client IDs and secrets or
illustrate a similar process for Business Logic clients of VTN. [Client Flow Overview]

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 29 -

Figure 11: OAuth2 client credential flow

11.7. OpenAPI Specification

OpenADR 3.0 is defined by an OpenAPI (aka swaggerdoc) YAML file. The OpenAPI platform provides
mechanisms to define security objects and use them to assign scopes to operations [OpenAPI Auth]. In
this manner the specification defines which clients can perform which operations on which objects. For
example, Business logic clients can create events, but VENs cannot.

Each endpoint operation definition includes a security attribute, with a child attribute of
oAuth2ClientCredentials that specifies what permissions are required for the operation. For example,

/programs:
...

get:
...

security:
- oAuth2ClientCredentials: [read_all]

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 30 -

The ‘read_all’ scope is defined in the oAuth2ClientCredentials securitySchemes: section of the OpenAPI
document, as are other scopes.

12. Reference Implementation

The OpenADR Alliance provides an open source Reference Implementation (RI) [OADR3-RI] which
includes a simple implementation of the client credential flow.

Using constructs available in OpenAPI and the swaggerhub auto-generated python VTN server, the RI
provides an <base_url>/auth/token endpoint that clients use to exchange pre-allocated clientID and secret
credentials for an access token. The token is included as a bearer token header in each subsequent API
request. The server framework resolves the token to a set of scopes which are used to enforce access
control to each endpoint operation. These steps are described below:

12.1. Step 1: Trade clientID/clientSecret for access token

CURL is a command line tool for making http requests. The example here illustrates an http GET request
to obtain an access token. ClientID and clientSecret are included as headers, per best practice.

$ curl http://localhost:8080/openadr3/OADR-3.0.0/1.0.0/auth/token -H 'clientID:
ven_client' -H 'clientSecret: 999'

The RI hardcodes clientIDs and clientSecrets and tokens. On requests to the auth/token endpoint the
endpoint handler (fetch_token()) interprets the clientID and clientSecret headers in the request and
returns one of ‘ven_token’, ‘bl_token’, or ‘bad_token’.

In a production environment, the entity that grants clientIDs and clientSecrets populates a service or
database with an association between those credentials and a token and set of scopes, such that Step 3
below can be performed.

12.2. Step 2: Include access token in API requests

The token obtained from Step 1 is used in a Bearer token header in API requests, as illustrated below:

$ curl http://localhost:8080/openadr3/OADR-3.0.0/1.0.0/programs -H "Authorization:
Bearer ven_token"

12.3. Step 3: Resolve token to scopes

A scope is a string associated with an endpoint operation that the server framework checks to ensure an

incoming request is permitted. See section above titled OpenAPI Specification for an example.

On every API request (except <base_url>/auth/token) the server framework invokes the
authorization_controller.check_oAuth2ClientCredentials() method to resolve a token to a set of scopes.

Copyright © OpenADR Alliance (2023). All Rights Reserved

OpenADR 3.0 Definitions - 31 -

The RI hardcodes the association between tokens and scopes.

In a production environment, the association between tokens and scopes is dynamically maintained by
service or database.

12.4. Step 4: Enforce Access Control

On every API request (except <base_url>/auth/token), after a token as been resolved to scopes, the
server framework invokes the authorization_controller.validate_scope_oAuth2ClientCredentials() method
to ensure the request has been granted the required scopes for the requested operation. If the required
scopes have not been granted an http 403 status code will be returned.

- End of Document -

Copyright © OpenADR Alliance (2023). All Rights Reserved

